Fundamental Notations

1.1 Problem solving concept top down and
bottom up design

Top Down Program Design

Top down program design is an approach to program design that starts with the general concept
and repeatedly breaks it down into its component parts. In other words, it starts with the abstract and
continually subdivides it until it reaches the specific. Consider creating the prime factorization of a
number like 1540. The steps involved might look like:

1540

2x770
2x2x385
2x2x5x77
2x2x5x7x11

Top down program design works the same way. We start with the overall objective and wind up with
a series of steps needed to accomplish it.

Bottom Up Program Design

Bottom up program design works in the exact opposite way. It starts with the component parts and
repeatedly combines them to achieve the general concept. In other words, it starts with the specific
and continually combines it until it reaches the abstract. For example, consider the factorization from
the previous section. For bottom up design the steps involved might look like:

2Xx2x5x7x11
2X2XxX5x77
2x2x385
2x770

1540

DIFFERENCE BETWEEN TOP DOWN APPROACH AND BOTTOM UP APPROACH

e Structure/procedure oriented programming languages like C programming language follows top
down approach. Whereas object oriented programming languages like C++ and Java
programming language follows bottom up approach.

e Top down approach begins with high level design and ends with low level design or
development. Whereas, bottom up approach begins with low level design or development and

ends with high level design.
e Intop down approach, main() function is written first and all sub functions are called from main
function. Then, sub functions are written based on the requirement. Whereas, in bottom up

approach, code is developed for modules and then these modules are integrated with main()

function.

¢ Now-a-days, both approaches are combined together and followed in modern software design

1.1.1 Structured Programming

Structured programming is a logical programming method that is considered a precursor to object-
oriented programming (OOP). Structured programming facilitates program understanding and
modification and has a top-down design approach, where a system is divided into compositional

subsystems.

Structured programming is a procedural programming subset that reduces the need for goto
statements. Modular programming is another example of structural programming, where a program

is divided into interactive modules.

1.2 Concept of datatypes, variables & constants

1.2.1 Data type

A data type, in programming, is a classification that specifies which type of value a variable has and
what type of mathematical, relational or logical operations can be applied to it without causing an
error. A string, for example, is a data type that is used to classify text and an integer is a data type

used to classify whole numbers.

Data Type Used for Example
String Alphanumeric characters hello world, Alice, Bob123
Integer Whole numbers 7,12,999

Float (floating point)

Number with a decimal point

3.15, 9.06, 00.13

Character

Encoding text numerically

97 (in ASCII, 97 is a lower case 'a')

Boolean

Representing logical values

TRUE, FALSE

https://whatis.techtarget.com/definition/ASCII-American-Standard-Code-for-Information-Interchange

1.2.2 Variable

In programming, a variable is a value that can change, depending on conditions or on information
passed to the program. Typically, a program consists of instructions that tell the computer what to do
and data that the program uses when it is running. The data consists of constants or fixed values
that never change and variable values (which are usually initialized to "0" or some default value
because the actual values will be supplied by a program's user). Usually, both constants and
variables are defined as certain datatypes. Each data type prescribes and limits the form of the data.
Examples of data types include: an integer expressed as a decimal number, or a string of text

characters, usually limited in length.

1.2.3 Constants

In programming, a constant is a value that never changes. The other type of values that programs
use is variables, symbols that can represent different values throughout the course of a program.

A constant can be a number, like 25 or 3.6.

A character, like a or $, a character string, like "this is a string".

Constants are also used in spreadsheet applications to place non-changing values in cells. In
contrast, a spreadsheet formula can produce a different value each time the spreadsheet is opened

or changed.

1.3 Concepts of Pointer variables

A Pointer in C language is a variable which holds the address of another variable of same data type.
Pointers are used to access memory and manipulate the address.

Pointers are one of the most distinct and exciting features of C language. It provides power and
flexibility to the language.

Whenever a variable is declared in a program, system allocates a location i.e. an address to that
variable in the memory, to hold the assigned value. This location has its own address number, which
we just saw above.

Let us assume that system has allocated memory location 80F for a variable a.

int a = 10;

https://www.webopedia.com/TERM/P/program.html
https://www.webopedia.com/TERM/V/variable.html
https://www.webopedia.com/TERM/C/character.html
https://www.webopedia.com/TERM/C/character_string.html
https://www.webopedia.com/TERM/S/spreadsheet.html
https://www.webopedia.com/TERM/C/cell.html
https://www.webopedia.com/TERM/F/formula.html

Value

.

10

]

Location a —— name of location

We can access the value 10 either by using the variable name a or by using its address 80F.

The question is how we can access a variable using it's address? Since the memory addresses are
also just numbers, they can also be assigned to some other variable. The variables which are used
to hold memory addresses are called Pointer variables.

A pointer variable is therefore nothing but a variable which holds an address of some other variable.
And the value of a pointer variable gets stored in another memory location.

address of "a"

|_80F
ptr «— pointer name
. 82C
pointer
I 10 : address of pointer

80F

ARRAY

2.1 Concept of Arrays

Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the
same type. An array is used to store a collection of data, but it is often more useful to think of an
array as a collection of variables of the same type.Array makes it easier to calculate the position of
each element by simply adding an offset to a base value.All arrays consist of contiguous memory
locations. The lowest address corresponds to the first element and the highest address to the last

element.

First Element Last Element

! !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -

2.1.1 Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of
elements required by an array as follows -

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater than

zero and type can be any valid C data type. For example, to declare a 10-element array
called balance of type double, use this statement -

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

2.1.2 Initializing Arrays
You caninitialize an array in C either one by one or using a single statement as follows -

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the nhumber of elements that we

declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created.
Therefore, if you write —

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

2.1.3 Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example -

double salary = balance[9];

The above statement will take the 10" element from the array and assign the value to salary
variable.

C programming language allows multidimensional arrays. Here is the general form of a
multidimensional array declaration -

type name[sizel][size2]...[sizeN];

For example, the following declaration creates a three dimensional integer array -

int threedim[5][10][4];

2.2 Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-dimensional array

is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of size
[X]ly], you would write something as follows —

type arrayName [x][y 1;

Where type can be any valid C data type and arrayName will be a valid C identifier. A two-
dimensional array can be considered as a table which will have x number of rows and y number of

columns. A two-dimensional array a, which contains three rows and four columns can be shown as
follows —

Column 0 Column 1 Column 2

Column 3
Row 0 a[0][0] a[o][1] a[0][2] a[0][3]
Row 1 a[1][0] a[1][1] | a[1112] a[1][3]
Row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Thus, every element in the array a is identified by an element name of the form a[i][j], where 'a'

is the name of the array, and 'i' and 'j are the subscripts that uniquely identify each elementin'a’.

2.21 Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row. Following is
an array with 3 rows and each row has 4 columns.

int a[3][4] = {

{0, 1, 2, 3} , /* initializers for row indexed by @ */

{4, 5, 6, 7} , /* initializers for row indexed by 1 */

{8, 9, 10, 11} /*

}s

initializers for row indexed by 2 */

The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent to the previous example -

int a[3][4] = {@,1,2,3,4,5,6,7,8,9,10,11};

2.2.2 Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index and
column index of the array. For example -

int val = a[2][3];

The above statement will take the 4th element from the 3rd row of the array

2.3 Operations on Arrays

Following are the basic operations supported by an array.

e Traverse - print all the array elements one by one.

¢ Insertion - Adds an element at the given index.

e Deletion — Deletes an element at the given index.

e Search — Searches an element using the given index or by the value.
o Update — Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults values to its elements in following
order.

Data Type Default Value
bool false
char 0

int 0
float 0.0
double 0.0f
void
wchar_t 0

2.3.1 Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the requirement, a

new element can be added at the beginning, end, or any given index of array.

Here, we see a practical implementation of insertion operation, where we add data at the end of the
array —

Algorithm
Let Array be a linear unordered array of MAX elements.

Example

Result

Let LA be a Linear Array (unordered) with N elements and K is a positive integer such that K<=N.

Following is the algorithm where ITEM is inserted into the K™ position of LA —

1. Start
2. Set J =N
3. Set N = N+1
4. Repeat steps 5 and 6 while J >= K
5. Set LA[J+1] = LA[J]
6. Set J = J-1
7. Set LA[K] = ITEM
8. Stop
Example

Following is the implementation of the above algorithm -

#include <stdio.h>

main() {
int LA[] = {1,3,5,7,8};
int item = 10, k = 3, n = 5;

int i =0, j = n;
printf("The original array elements are :\n");
for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

n=n+1;

while(j >= k) {

LA[j+1] = LA[]];

LA[k] = item;

printf("The array elements after insertion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

When we compile and execute the above program, it produces the following result -

Output

The original array elements are :
LA[@] = 1

LA[1]
LA[2]
LA[3]
LA[4]
The arra
LA[O]
LA[1]
LA[2]
LA[3]
LA[4]
LA[5]

elements after insertion :

O NREPUIWRERKXK 00N UVTw

For other variations of array insertion operation click here

2.3.2 Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all elements of an

array.

https://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following

is the algorithm to delete an element available at the K" position of LA.

1. Start

2. Set J =K

3. Repeat steps 4 and 5 while J < N
4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

Example

Following is the implementation of the above algorithm -

#include <stdio.h>

void main() {
int LA[] = {1,3,5,7,8};
int k = 3, n = 5;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

while(j < n) {

LA[j-1] = LA[]];

printf("The array elements after deletion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

When we compile and execute the above program, it produces the following result -

Output

The original array elements are :
LA[@] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after deletion :
LA[@] = 1

LA[1] = 3

LA[2] = 7

LA[3] = 8

2.3.3 Search Operation

You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following
is the algorithm to find an element with a value of ITEM using sequential search.

Start

Set J =0

Repeat steps 4 and 5 while J < N

IF LA[J] is equal ITEM THEN GOTO STEP 6
Set J = J +1

PRINT J, ITEM

A UVThWNRE

7. Stop

Example

Following is the implementation of the above algorithm -

#include <stdio.h>
void main() {
int LA[] = {1,3,5,7,8};
int item = 5, n = 5;
int i =0, j = 0;
printf("The original array elements are :\n");
for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

while(j < n){
if(LA[j] == item) {

break;

printf("Found element %d at position %d\n", item, j+1);

When we compile and execute the above program, it produces the following result -

Output

The original array elements are :

LA[@] = 1
LA[1] = 3
LA[2] = 5
LA[3] = 7
LA[4] = 8

Found element 5 at position 3

2.3.4 Update Operation

Update operation refers to updating an existing element from the array at a given index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following

is the algorithm to update an element available at the K" position of LA.

1. Start
2. Set LA[K-1] = ITEM
3. Stop

Example

Following is the implementation of the above algorithm -

#include <stdio.h>

void main() {
int LA[] = {1,3,5,7,8};
int k =3, n =5, item = 10;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = % \n", i, LA[i]);

LA[k-1] = item;
printf("The array elements after updation :\n");
for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

When we compile and execute the above program, it produces the following result -

Output

The original array elements are :
LA[@] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after updation :
LA[O] = 1

LA[1] = 3

LA[2] = 10

LA[3] = 7

LA[4] = 8

3. Linked Lists

3.1Introduction to Linked Lists

Linked List is a very commonly used linear data structure which consists of group of nodes in a
sequence.

Each node holds its own data and the address of the next node hence forming a chain like
structure.

Linked Lists are used to create trees and graphs.

HEADER

Data = ADDR Data ADDR Data ADDR

3.2 Linked List Representation

node node node

LinkedList Data Data Data

head Next / Next / |N:e]xt

—1—Null

As per above shown illustration, following are the important points to be considered.

LinkedList contains an link element called first.

Each Link carries a data field(s) and a Link Field called next.

Each Link is linked with its next link using its next link.

Last Link carries a Link as null to mark the end of the list.

3.3 operations on Linked List

. Create

. Insert

. Delete

. Traverse

. Search

. Concatenation
. Display

N O o1 DA W N =

3.3.1 Create

Create operation is used to create constituent node when required.

In create operation, memory must be allocated for one node and assigned to head as follows.

Creating first node

head = (node*) malloc (sizeof(node));
head -> data = 20;
head -> next = NULL;

Head | 20

3.3.2 Insert
e Insert operation is used to insert a new node in the linked list.
e Suppose, we insert a node B(New Node), between A(Left Node) and C(Right Node), it is

represented as:
point B.next to B

NewNode.next -> RightNode;
We can insert an element using three cases:
i. At the beginning of the list

ii. At a certain position (Middle)
iii. At the end

Inserting an element

node* nextnode = malloc(sizeof(node));
nextnode -> data = 22;
nextnode -> next = NULL;

head -> next = nextnode;

Head o 20 —>» 22

The above figure represents the example of create operation, where the next element (i.e 22) is
added to the next node by using insert operation.

i. At the beginning of the list
Head' - » 20 > 30 —» Null

- 10 | Current Node
New Node

Fig. Inserting a node at the
beginning of the list

New node becomes the new head of the linked list because it is always added before the head of
the given linked list.

ii. At certain position (Middle)

‘Head —>| 10 | 20 | - »| 40 —>{Null|

Previous Node 30 |/ Current Node
New Node

Fig. Inserting a node at middle of
the list

While inserting a node in middle of a linked list, it requires to find the current node. The dashed line
represents the old node which points to new node.

iii. At the end

Head—>| 10 —> 20 —>| 30 | - > Null
Previous ‘
Node A0}
Current New Node
Node
Fig. Inserting a node at the end
of the list

While inserting a node at the end of the list, it is achieved by comparing the element values.

3.3.3 Delete

e Delete operationis used to delete node from the list.

e This operation is more than one step process.
We can delete an element using three cases:

i. From the beginning of the list
ii. From the middle
iii. From the end

Deleting the element
int delete (node** head, node* n); // Delete the node n if exists.

i. From the beginning of the list

Head —»| X —> Y —> 2|0

Fig. Deleting a node from the beginning

When deleting the node from the beginning of the list then there is no relinking of nodes to be
performed; it means that the first node has no preceding node. The above figure shows the
removing node with x. However, it requires to fix the pointer to the beginning of the list which is
shown in the figure below:

Head | X —> Y —» 210

ii. From the middle

Head —» X y -t 2.1 0

Fig. Deleting a node from the middie
Deleting a node from the middle requires the preceding node to skip over the node being removed.

The above figure shows the removal of node with x. It means that there is a need refer to the node
before we can remove it.

iii. From the end

Head —» X » ¥y |0 z |0

Fig. Deleting a node from the end

Deleting a node from the end requires that the preceding node becomes the new end of the list that
points to nothing after it. The above figure shows removing the node with z.

3.3.4 Traverse
Traverse operations is a process of examining all the nodes of linked list from the end to the other
end.

In traverse operation, recursive function is used to traverse a linked list in a reverse order.
The following code snippet represents traversing a node in a linked list:

void traverse(node *head)
{
if(head != NULL)
{
traverse (head -> next);
printf(“%d”, head -> data);
}
}

3.4 Applications of Linked List

e Linked Lists can be used to implement Stacks , Queues.

e Linked Lists can also be used to implement Graphs. (Adjacency list representation of
Graph).

e Implementing Hash Tables :- Each Bucket of the hash table can itself be a linked list.
(Open chain hashing).

e Undo functionality in Photoshop or Word . Linked list of states.

e A polynomial can be represented in an array or in a linked list by simply storing the
coefficient and exponent of each term.

e However, for any polynomial operation , such as addition or multiplication of polynomials ,
linked list representation is more easier to deal with.

e Linked lists are useful for dynamic memory allocation.

e The real life application where the circular linked list is used is our Personal Computers,
where multiple applications are running.

e Allthe running applications are kept in a circular linked list and the OS gives a fixed time
slot to all for running. The Operating System keeps on iterating over the linked list until all
the applications are completed

3.5 Doubly Linked List

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways, either
forward and backward easily as compared to Single Linked List. Following are the important terms

to understand the concept of doubly linked list.
e Link - Each link of a linked list can store a data called an element.
e Next — Each link of a linked list contains a link to the next link called Next.
e Prev - Eachlink of a linked list contains a link to the previous link called Prev.

o LinkedList — A Linked List contains the connection link to the first link called First and to the

last link called Last.

3.5.1 Doubly Linked List Representation

Head L A Next |l Next | ——— Next
—* Prev =—"| Prev =1—"|| Prev

NULL

As per the above illustration, following are the important points to be considered.
¢ Doubly Linked List contains a link element called first and last.
e Each link carries a data field(s) and two link fields called next and prev.
e Each linkis linked with its next link using its next link.
e Each linkis linked with its previous link using its previous link.
e The last link carries a link as null to mark the end of the list.
3.6 Operations on Doubly Linked List
Following are the basic operations supported by a list.
¢ Insertion - Adds an element at the beginning of the list.
o Deletion - Deletes an element at the beginning of the list.
¢ Insert Last — Adds an element at the end of the list.
e Delete Last — Deletes an element from the end of the list.
¢ Insert After — Adds an element after an item of the list.
e Delete — Deletes an element from the list using the key.
o Display forward — Displays the complete list in a forward manner.

o Display backward - Displays the complete list in a backward manner.
3.6.1 Insertion Operation
Following code demonstrates the insertion operation at the beginning of a doubly linked list.

Example

//insert link at the first location

void insertFirst(int key, int data) {

//create a link
struct node *1link = (struct node*) malloc(sizeof(struct node));
link->key = key;

link->data = data;

if (isEmpty()) {
//make it the last link
last = link;

} else {
//update first prev link

head->prev = link;

//point it to old first link

link->next = head;

//point first to new first link
head = link;
}
3.6.2 Deletion Operation
Following code demonstrates the deletion operation at the beginning of a doubly linked list.

Example

//delete first item

struct node* deleteFirst() {

//save reference to first link

struct node *tempLink = head;

//if only one link
if(head->next == NULL) {

last = NULL;

} else {

head->next->prev = NULL;

head = head->next;

//return the deleted link

return tempLink;

4. STACKS, QUEUES AND RECURSION

4.1 Introduction to stacks

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is
named stack as it behaves like a real-world stack, for example — a deck of cards or a pile of plates,

7 ~
e ———

etc.

A real-world stack allows operations at one end only. For example, we can place or remove a card
or plate from the top of the stack only. Likewise, Stack ADT allows all data operations at one end

only. At any given time, we can only access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which
is placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is

called PUSH operation and removal operation is called POP operation.

4.2 Representation of stacks

The following diagram depicts a stack and its operations —

udwog weQq

Last In - First Out

Push | Pop
Data Blement Data Element ‘
1
Data Element Data Element ‘
Data Element Data Element \
|
Data Element Data Element ‘
|
Data Element Data Element ‘
|

Stack Stack

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can
either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to
implement stack using arrays, which makes it a fixed size stack implementation.

4.3 Implementation of stacks

A stack can be easily implemented either through an array or a linked list. What identifies the data
structure as a stack in either case is not the implementation but the interface: the user is only
allowed to pop or push items onto the array or linked list, with few other helper operations. The
following will demonstrate both implementations, using pseudocode.

4.3.1 Array

An array can be used to implement a (bounded) stack, as follows. The first element (usually at
the zero offset) is the bottom, resulting in array[0] being the first element pushed onto the stack and

the last element popped off. The program must keep track of the size (length) of the stack, using a
variable top that records the number of items pushed so far, therefore pointing to the place in the
array where the next element is to be inserted (assuming a zero-based index convention). Thus, the
stack itself can be effectively implemented as a three-element structure:

structure stack:
maxsize : integer
top : integer
items : array of item

procedure initialize(stk : stack, size : integer):
stk.items < new array of size items, initially empty
stk.maxsize < size

stk.top « O

The push operation adds an element and increments the top index, after checking for overflow:

procedure push(stk : stack, x : item):
if stk.top = stk.maxsize:
report overflow error
else:
stk.items[stk.top] « x
stk.top « stk.top + 1

Similarly, pop decrements the fop index after checking for underflow, and returns the item that was
previously the top one:

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Zero_offset

procedure pop (stk : stack):
if stk.top = O:
report underflow error
else:
stk.top « stk.top - 1
r « stk.items[stk.top]

return r

Using a dynamic array, it is possible to implement a stack that can grow or shrink as much as
needed. The size of the stack is simply the size of the dynamic array, which is a very efficient
implementation of a stack since adding items to or removing items from the end of a dynamic array
requires amortized O(1) time.

4.3.2 Linked list

Another option for implementing stacks is to use a singly linked list. A stack is then a pointer to the
"head" of the list, with perhaps a counter to keep track of the size of the list:

structure frame:
data : item
next : frame or nil

structure stack:

head : frame or nil
size : integer
procedure initialize(stk : stack):

stk.head « nil

stk.size « O

Pushing and popping items happens at the head of the list; overflow is not possible in this
implementation (unless memory is exhausted):

procedure push(stk : stack, x : item):
newhead « new frame
newhead.data « x
newhead.next « stk.head
stk.head «~ newhead
stk.size « stk.size + 1
procedure pop (stk : stack):
if stk.head = nil:

report underflow error

https://en.wikipedia.org/wiki/Dynamic_array
https://en.wikipedia.org/wiki/Singly_linked_list

r « stk.head.data
stk.head « stk.head.next
stk.size « stk.size - 1

return r

4.4 Applications of Stack

In a stack, only limited operations are performed because it is restricted data structure. The

elements are deleted from the stack in the reverse order.
Following are the applications of stack:

1. Expression Evaluation
2. Expression Conversion
i. Infix to Postfix
ii. Infix to Prefix
iii. Postfix to Infix
iv. Prefix to Infix
3. Backtracking

4. Memory Management

4.4 Introduction to Queues

Queue is also an abstract data type or a linear data structure, just like stack data structure,
in which the first element is inserted from one end called the REAR(also called tail), and the
removal of existing element takes place from the other end called as FRONT(also

called head).

This makes queue as FIFO(First in First Out) data structure, which means that element
inserted first will be removed first.

Which is exactly how queue system works in real world. If you go to a ticket counter to buy
movie tickets, and are first in the queue, then you will be the first one to get the tickets.
Right? Same is the case with Queue data structure. Data inserted first, will leave the queue

first.

https://www.studytonight.com/data-structures/stack-data-structure

The process to add an element into queue is called Enqueue and the process of removal of
an element from queue is called Dequeue.

engueue(] operation dequeue() operation

S)
1 1

REAR FRONT

enqueue() is the operation for adding an element inte Queue.

dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

LAST IN FIRST IN
LAST OUT FIRST OUT

— e f

A real-world example of queue can be a single-lane one-way road, where
the vehicle enters first, exits first. More real-world examples can be seen as
queues at the ticket windows and bus-stops.

4.6 Implementation of Queues

Queue can be implemented using an Array, Stack or Linked List. The easiest way of implementing a
queue is by using an Array.

Initially the head(FRONT) and the tail(REAR) of the queue points at the first index of the array
(starting the index of array from 0). As we add elements to the queue, the tail keeps on moving
ahead, always pointing to the position where the next element will be inserted, while

the head remains at the first index.

[o] M1 21 [81 [« [51 [68] [7]

Head Tail
[0] [1] [2] [3] [24] [5] [6] [71 Adding elements to
Queue
27
Head Tail
[O] 11 [2] 31 [4] [5] [e] [71
27 19 17 7
removing element
H;[;d I\Ta” ' from Queue
[0] [11 [21 [3] [o] [1] [2] [3] [4]
19 17 7 19 17 7
.
Head Tail Head Tail
[Al [B]

When we remove an element from Queue, we can follow two possible approaches (mentioned [A]
and [B] in above diagram). In [A] approach, we remove the element at head position, and then one
by one shift all the other elements in forward position.

In approach [B] we remove the element from head position and then move head to the next position.

In approach [A] there is an overhead of shifting the elements one position forward every time we
remove the first element.

In approach [B] there is no such overhead, but whenever we move head one position ahead, after
removal of first element, the size on Queue is reduced by one space each time.

4.6.1 Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are comparatively
difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue -
e Step 1 - Check if the queue is full.
e Step 2 - If the queue is full, produce overflow error and exit.
o Step 3 - If the queue is not full, increment rear pointer to point the next empty space.
o Step 4 - Add data element to the queue location, where the rear is pointing.

e Step 5 - return success.

Rear Front

¥> c 8 A before

Rear Front
} }
D c B A after

Queue Enqueue

Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen

situations.

Algorithm for enqueue operation

procedure enqueue(data)

if queue is full
return overflow

endif

rear < rear + 1
queue[rear] « data

return true

end procedure

Implementation of enqueue() in C programming language -
Example
int enqueue(int data)

if(isfull())

return 0;

rear = rear + 1;

queue[rear] = data;

return 1;

end procedure

4.6.2 Dequeue Operation

Accessing data from the queue is a process of two tasks — access the data where front is pointing

and remove the data after access. The following steps are taken to perform dequeue operation -
o Step 1 — Check if the queue is empty.
o Step 2 - If the queue is empty, produce underflow error and exit.
o Step 3 - If the queue is not empty, access the data where front is pointing.
e Step 4 - Increment front pointer to point to the next available data element.

e Step 5 - Return success.

Rear Front
} }
before D C B A
Rear Front
} }
after D c B dequeue
Queue

Queue Dequeue

Algorithm for dequeue operation

procedure dequeue

if queue is empty

return underflow

end if

data = queue[front]
front <« front + 1

return true

end procedure

Implementation of dequeue() in C programming language -

Example

int dequeue() {
if(isempty())

return 0;

int data = queue[front];

front = front + 1;

return data;

4.7 Circular Queue

¢ Ina circular queue, all nodes are treated as circular. Last node is connected back to the first node.
e Circular queue is also called as Ring Buffer.

e ltis an abstract data type.

Circular queue contains a collection of data which allows insertion of data at the end of the queue

and deletion of data at the beginning of the queue.

L)

)

- -

Y

Front Rear
Fig. Circular Queue

10

20(30| 5 |15|25

I

T

Front @ Rear

Fig. Circular Queue

The above figure shows the structure of circular queue. It stores an element in a circular way and

performs the operations according to its FIFO structure.

Operations on Circular Queue:

Front: Get the front item from queue.

Rear: Get the last item from queue.
enQueue(value) This function is used to insert an element into the circular queue. In a circular

queue, the new element is always inserted at Rear position.
Steps:
1. Check whether queue is Full — Check ((rear == SIZE-1 && front == 0) || (rear == front-1)).
2. Ifitisfull then display Queue is full. If queue is not full then, check if (rear == SIZE — 1
&& front != 0) if it is true then set rear=0 and insert element.
deQueue() This function is used to delete an element from the circular queue. In a circular
queue, the element is always deleted from front position.

Steps:
1. Check whether queue is Empty means check (front==-1).
2. Ifitis empty then display Queue is empty. If queue is not empty then step 3
3. Checkif (front==rear) if it is true then set front=rear= -1 else check if (front==size-1), if it
is true then set front=0 and return the element.

. Example: Program for Circular Queue

#include<stdio.h>
#include<cstdlib>
#define max 6
int g[10],front=0,rear=-1;
int main()
{

int ch;

void insert();

void delet();

void display();

printf("\nCircular Queue Operations\n");
printf("1.Insert\n2.Delete\n3.Display\n4.Exit\n");
while(1)
{
printf("Enter Your Choice:");
scanf("%d",&ch);
switch(ch)
{
case 1: insert();
break;
case 2: delet();
break;
case 3:display();
break;
case 4: exit(0);

default: printf("Invalid option\n");

}

void insert()
{
int x;
if((front==0&&rear==max-1)||(front>0&&rear==front-1))
printf("Queue is Overflow\n");
else
{
printf("Insert Element :");
scanf("%d",&x);
if(rear==max-1&&front>0)
{
rear=0;
g[rear]=x;
}
else
{
if((front==0&&rear==-1)||(rear!=front-1))

q[++rear]=x;

}
void delet()

{
int a;
if((front==0)&&(rear==-1))
{
printf("Queue is Underflow\n");
exit(0);
}

if(front==rear)

a=q[front];
rear=-1;
front=0;
}
else
if(front==max-1)
{
a=q[front];
front=0;
}
else a=q[front++];
printf("Deleted Element is : %d\n",a);
}
void display()
{
int ij;
if(front==0&&rear==-1)
{
printf("Queue is Underflow\n");
exit(0);
}
if(front>rear)
{
for(i=0;i<=rear;i++)
printf("\t%d",q[i]);
for(j=front;j<=max-1;j++)
printf("\n \t%d",q[j]);
printf("\nRear is at %d\n",q[rear]);
printf("\nFront is at %d\n",q[front]);
}

else

{

for(i=front;i<=rear;i++)
{

printf("\t%d",q[i]);
}
printf("\nRear is at %d\n",q[rear]);
printf("\nFront is at %d\n",q[front]);

}
printf("\n");

Output:

1.Insert

Circular Queue Operations

Enter Your Choice:1
Insert Element :10
Enter Your Choice:[}

2. Display

Enter Your Choice:3
10 20
Rear is at 40

Front is at 10

3. Delete

Enter Your Choice:2
Deleted Element 1is

Enter Your Choice:[}

4.8 De-queues

In Double Ended Queue, insert and delete operation can be occur at both ends that is front and rear

of the queue.

Insertion Insertion
> d | "
> > >
Deletion Front Rear Deletion

Fig. Double Ended Queue (Dequeue)

Example: Program for Double Ended Queue (Dequeue)

#include<stdio.h>
#include<stdlib.h>
#define MAX 30

typedef struct dequeue

{
int data[MAX];
int rear,front;
}dequeue;

void initialize(dequeue *p);

int empty(dequeue *p);

int full(dequeue *p);

void enqueueR(dequeue *p,int x);
void enqueueF(dequeue *p,int x);
int dequeueF(dequeue *p);

int dequeueR(dequeue *p);

void print(dequeue *p);

void main()

{

int i,x,0p,n;

dequeue q;
initialize(&q);
do
{
printf("\n1.Create\n2.Insert(Rear)\n3.Insert(Front)\n4.Delete(Rear)\n5.Delet(Front)
")
printf("\n6.Print\n7.Exit\n\nEnter your choice:");
scanf("%d",&op);

switch(op)
{
case 1: printf("\nEnter number of elements:");
scanf("%d",&n);
initialize(&q);
printf("\nEnter the data:");
for(i=0;i<n;i++)
{
scanf("%d",&x);
if(full(&q))
{
printf("\nQueue is Full!!");
exit(0);
b
enqueueR(&q,x);
b

break;

case 2: printf("\nInsert Element : ");
scanf("%d",&x);
if(full(&Qq))
{
printf("\nQueue is Fulll!");
exit(0);

b
enqueueR(&q,x);

break;

case 3: printf("\nInsert Element :");

scanf("%d",&x);

if(full(&Qq))

{
printf("\nQueue is Fulll!");
exit(0);

b

enqueueF(&q,x);

break;

case 4: if(empty(&q))
{
printf("\nQueue is Empty!!");
exit(0);
b
x=dequeueR(&q);
printf("\n Deleted Element is %d\n",x);

break;

case 5: if(empty(&q))
{
printf("\nQueue is Empty!!");
exit(0);
b
x=dequeueF(&q);
printf("\nDeleted Element is %d\n",x);

break;

case 6: print(&q);

break;

default: break;
b

Ywhile(op!=7);
b
void initialize(dequeue *P)
{

P->rear=-1;

P->front=-1;
b
int empty(dequeue *P)
{

if(P->rear==-1)

return(1);

return(0);
b
int full(dequeue *P)
{
if((P->rear+1)%MAX==P->front)
return(1);

return(0);
b
void enqueueR(dequeue *P,int x)
{
if(empty(P))
{
P->rear=0;
P->front=0;
P->data[0]=x;

else
{
P->rear=(P->rear+1)%MAX;

P->data[P->rear]=x;

b
void enqueueF(dequeue *P,int x)
{
if(empty(P))
{
P->rear=0;
P->front=0;
P->data[0]=x;
b
else
{
P->front=(P->front-1+MAX)%MAX;

P->data[P->front]=x;

b
int dequeueF(dequeue *P)
{
int x;
x=P->data[P->front];
if(P->rear==P->front) //delete the last element
initialize(P);
else
P->front=(P->front+1)%MAX;
return(x);
b
int dequeueR(dequeue *P)

{

int x;

b

x=P->data[P->rear];
if(P->rear==P->front)
initialize(P);
else
P->rear=(P->rear-1+MAX)%MAX;

return(x);

void print(dequeue *P)

{

if(empty(P))

{
printf("\nQueue is empty!!");
exit(0);

b

int i

i=P->front;

while(i!=P->rear)

{
printf("\n%d",P->data[i]);
i=(i+1)%MAX;

b

printf("\n%d\n",P->data[P->rear]);

Output:

1. Create

.Create
.Insert(Rear)
.Insert(Front)
.Delete(Rear)
.Delete(Front)
Print

Exit

Enter your choice:1

Enter number of elements:5

Enter the data:40

2. Insert (Front)

1.Create

2.Insert(Rear)
3.Insert(Front)
4.Delete(Rear)
5.Delete(Front)
6.Print
7.Exit

Enter your choice:3

Insert Element :40

3. Insert (Rear)

.Create
.Insert(Rear)
.Insert(Front)
.Delete(Rear)
.Delete(Front)
.Print

Exit
Enter your choice:2

Insert Element : 50

4. Display (Insert)

.Create
.Insert(Rear)
.Insert(Front)
RS IGERD)
.Delete(Front)
.Print

Exit

Enter your choice:6

5. Delete (Rear)

.Create
.Insert(Rear)
.Insert(Front)
.Delete(Rear)
.Delete(Front)
.Print

Exit
Enter your choice:4

Deleted Element is 50

6. Delete (Front)

.Create
.Insert(Rear)
.Insert(Front)
.Delete(Rear)
.Delete(Front)
.Print

LExit

Enter your choice:5

Deleted Element is 40

7. Display (Delete)

1.Create

2.Insert(Rear)
3.Insert(Front)
4.Delete(Rear)
5.Delete(Front)
6.Print
7.Exit

Enter your choice:6

4.9 Applications of Queues

e Queue is useful in CPU scheduling, Disk Scheduling. When multiple processes require
CPU at the same time, various CPU scheduling algorithms are used which are
implemented using Queue data structure.

e When data is transferred asynchronously between two processes.Queue is used for
synchronization. Examples : 10 Buffers, pipes, file 10, etc.

e Inprint spooling, documents are loaded into a buffer and then the printer pulls them off the
buffer at its own rate. Spooling also lets you place a number of print jobs on a queue
instead of waiting for each one to finish before specifying the next one.

e Breadth First searchin a Graph .It is an algorithm for traversing or searching graph data
structures. It starts at some arbitrary node of a graph and explores the neighbor nodes
first, before moving to the next level neighbors.

e Handling of interrupts in real-time systems. The interrupts are handled in the same order
as they arrive, First come first served.

e Inreal life, Call Center phone systems will use Queues, to hold people calling them in an
order, until a service representative is free.

4.10 Recursion

The process in which a function calls itself directly or indirectly is called recursion and the
corresponding function is called as recursive function. Using recursive algorithm, certain problems
can be solved quite easily. Examples of such problems are Towers of Hanoi (TOH),
Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc

int fact(int n)
{
if (n < = 1) // base case
return 1;
else

return n*fact(n-1);

5. TREES

5.1 Concept of trees

Tree represents the nodes connected by edges. We will discuss binary tree or binary search tree

specifically.

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a special

condition that each node can have a maximum of two children. A binary tree has the benefits of

both an ordered array and a linked list as search is as quick as in a sorted array and insertion or

deletion operation are as fast as in linked list.

Root

A Level O

B C Level 1

Parent Node D - F Siblings G Level 2

Child Node H 1 J Level 3
Sub-tree Leaf Node

5.1.1 Important Terms

Following are the important terms with respect to tree.

Path - Path refers to the sequence of nodes along the edges of a tree.

Root — The node at the top of the tree is called root. There is only one root per tree and one

path from the root node to any node.
Parent — Any node except the root node has one edge upward to a node called parent.

Child - The node below a given node connected by its edge downward is called its child

node.
Leaf — The node which does not have any child node is called the leaf node.

Subtree - Subtree represents the descendants of a node.

¢ Visiting - Visiting refers to checking the value of a node when control is on the node.
e Traversing — Traversing means passing through nodes in a specific order.

e Levels — Level of a node represents the generation of a node. If the root node is at level 0,
then its next child node is at level 1, its grandchild is at level 2, and so on.

¢ keys - Key represents a value of a node based on which a search operation is to be carried
out for a node.

5.2 Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have a value less than its

parent's value and the node's right child must have a value greater than its parent value.

= /_ \ =
7N O N

10 19

We're going to implement tree using node object and connecting them through references.
Tree Node

The code to write a tree node would be similar to what is given below. It has a data part and
references to its left and right child nodes.

struct node {
int data;
struct node *leftChild;

struct node *rightChild;

In a tree, all nodes share common construct.

5.3 Traversing BST

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all
nodes are connected via edges (links) we always start from the root (head) node. That is, we

cannot randomly access a node in a tree. There are three ways which we use to traverse a tree -

e In-order Traversal
e Pre-order Traversal
e Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the

values it contains.

5.3.1 In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. We

should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an ascending

order.
Root
=2
oA
-1 / T \
= ! e
:fi//7 V\\\\\\ /:fi/)? \\\\\\\
1 < S 1 &S e Qe
Lefi Subtree Right Subtreese

We start from A, and following in-order traversal, we move to its left subtree B. B is also traversed
in-order. The process goes on until all the nodes are visited. The output of inorder traversal of this
tree will be -

D—-B—-E—-A—->F—->C—G

Algorithm

Until all nodes are traversed -
Step 1 - Recursively traverse left subtree.
Step 2 - Visit root node.

Step 3 - Recursively traverse right subtree.

5.3.2 Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the right
subtree.

Root

= : /— \ g
o % .an

2N = = =4 =T

Lefi Subtree Right Subtree

We start from A, and following pre-order traversal, we first visit A itself and then move to its left

subtree B. B is also traversed pre-order. The process goes on until all the nodes are visited. The
output of pre-order traversal of this tree will be -

A—-B—-D—-E—-C—>F—->G
Algorithm

Until all nodes are traversed -

Step 1 - Visit root node.

Step 2 - Recursively traverse left subtree.
Step 3 - Recursively traverse right subtree.

5.3.3 Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse the left
subtree, then the right subtree and finally the root node.

Root

e

= P /X =
= = .

L eft Subtres Right Subtres

g B

We start from A, and following Post-order traversal, we first visit the left subtree B. B is also

traversed post-order. The process goes on until all the nodes are visited. The output of post-order
traversal of this tree will be -

D-E—-B—->F—-G—->C—-A

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.
Step 2 - Recursively traverse right subtree.
Step 3 - Visit root node.

5.4 BST Operations
5.4.1 Insert Operation in BST

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first
locate its proper location. Start searching from the root node, then if the data is less than the key
value, search for the empty location in the left subtree and insert the data. Otherwise, search for the

empty location in the right subtree and insert the data.

Algorithm

If root is NULL
then create root node

return

If root exists then

compare the data with node.data
while until insertion position is located
If data is greater than node.data

goto right subtree

else

goto left subtree

endwhile

insert data

end If

Implementation

The implementation of insert function should look like this -

void insert(int data) {
struct node *tempNode = (struct node*) malloc(sizeof(struct node));
struct node *current;

struct node *parent;

tempNode->data = data;
tempNode->1leftChild = NULL;

tempNode->rightChild = NULL;

//if tree is empty, create root node
if(root == NULL) {
root = tempNode;

} else {

current root;

parent = NULL;

while(1) {

parent = current;

//go to left of the tree
if(data < parent->data) {

current = current->leftChild;

//insert to the left
if(current == NULL) {
parent->leftChild = tempNode;

return;

//go to right of the tree
else {

current = current->rightChild;

//insert to the right
if(current == NULL) {
parent->rightChild = tempNode;

return;

5.4.2 Search Operation in BST

Whenever an element is to be searched, start searching from the root node, then if the data is less

than the key value, search for the element in the left subtree. Otherwise, search for the element in
the right subtree. Follow the same algorithm for each node.

Algorithm

If root.data is equal to search.data
return root
else

while data not found

If data is greater than node.data
goto right subtree
else

goto left subtree

If data found
return node

endwhile

return data not found

end if

The implementation of this algorithm should look like this.

struct node* search(int data) {
struct node *current = root;

printf("Visiting elements: ");

while(current->data != data) {
if(current != NULL)

printf("%d ",current->data);
//go to left tree

if(current->data > data) {
current = current->leftChild;

}

//else go to right tree

else {

current = current->rightChild;

//not found
if(current == NULL) {

return NULL;

return current;

}

5.5 Introduction to Heap

The heap is a binary tree, meaning at the most, each parent has two children. There are two types of
heaps: the max and min heap. The root node of a max heap is the highest value in the heap,

whereas a min heap has the minimum value allocated to the root node.

https://www.thecodingdelight.com/binary-search-tree-implementation-javascript/

The heap data structure is a very useful data structure that every programmer should know well. The
heap data structure is used behind the scenes to perform the heap sort. Understanding how the

heap works will allow programmers to make wiser decisions when programming in an environment
where memory management is crucial.

6. SORTING AND SEARCHING

6.1 Introduction to Sorting and Searching

6.1.1 Sorting

Sorting is nothing but arranging the data in ascending or descending order. The term sorting came
into picture, as humans realised the importance of searching quickly.

There are so many things in our real life that we need to search for, like a particular record in
database, roll numbers in merit list, a particular telephone number in telephone directory, a particular
page in a book etc. All this would have been a mess if the data was kept unordered and unsorted,

but fortunately the concept of sorting came into existence, making it easier for everyone to arrange
data in an order, hence making it easier to search.

Sorting arranges data in a sequence which makes searching easier.

6.1.2 Searching

e Searching is the process of finding a given value position in a list of values.

o It decides whether a search key is present in the data or not.

e ltis the algorithmic process of finding a particular item in a collection of items.

e |t can be done on internal data structure or on external data structure.

6.2 Search Algorithm

To search an element in a given array, it can be done in following ways:

1. Sequential Search
2. Binary Search

6.2.1 Linear Search

Sequential search is also called as Linear Search.

Sequential search starts at the beginning of the list and checks every element of the list.

It is a basic and simple search algorithm.

Sequential search compares the element with all the other elements given in the list. If the element
is matched, it returns the value index, else it returns -1.

10| 5 |15(20|25 | 35

start— I I\ ST

Fig. Sequential Search

The above figure shows how sequential search works. It searches an element or value from an array
till the desired element or value is not found. If we search the element 25, it will go step by step ina
sequence order. It searches in a sequence order. Sequential search is applied on the unsorted or
unordered list when there are fewer elements in a list.

The following code snippet shows the sequential search operation:

function searchValue(value, target)

{
for (vari = 0; i < value.length; i++)
{
if (value[i] == target)
{
return i;
}
}
return -1;
}

searchValue([10, 5, 15, 20, 25, 35], 25); // Call the function with array and number to be searched

Example: Program for Linear Search

#include <stdio.h>

int main()

{

int arr[50], search, cnt, num;

printf("Enter the number of elements in array\n");

scanf("%d",&num);

printf("Enter %d integer(s)\n", num);

for (cnt = 0; cnt < num; cnt++)

scanf("%d", &arr[cnt]);

printf("Enter the number to search\n");

scanf("%d", &search);

for (cnt = 0; cnt < num; cnt++)

{
if (arr[cnt] == search) /* if required element found */
{
printf("%d is present at location %d.\n", search, cnt+1);
break;
}
}

if (cnt == num)

printf("%d is not present in array.\n", search);

return O;

}
Output:

the number of elements in array

5 integer(s)

the number to search

present at location 4.

6.2.2 Binary Search

Binary Search is used for searching an element in a sorted array.

It is a fast search algorithm with run-time complexity of O(log n).

Binary search works on the principle of divide and conquer.

This searching technique looks for a particular element by comparing the middle most element of
the collection.

It is useful when there are large number of elements in an array.

5 (1015|120 |25 |30

The above array is sorted in ascending order. As we know binary search is applied on sorted lists

only for fast searching.
For example, if searching an element 25 in the 7-element array, following figure shows how binary
search works:

Search
Element : 25

Starts with

middle element

25>20

25<30

Element
Found

10 | 15 25 35
10|15 .25 35
10 15.25 35
10 15 20 25.35
10 15 E 35
10 15 20 |2 30 35

Fig. Working Structure of Binary Search

Binary searching starts with middle element. If the element is equal to the element that we are
searching then return true. If the element is less than then move to the right of the list or if the

element is greater than then move to the left of the list. Repeat this, till you find an element.

Example: Program for Binary Search

#include<stdio.h>

#include<conio.h>

void main()

{

int f, I, m, size, i, sElement, list[50]; //int f, | ,m

clrscr();

printf("Enter the size of the list: ");

scanf("%d",&size);

printf("Enter %d integer values : \n", size);

for (i=0;i < size; i++)

: First, Last, Middle

scanf("%d", &list[i]);

printf("Enter value to be search: ");

scanf("%d", &sElement);

f=0;
| = size - 1;

m = (f+)/2;

while (f <=1) {
if (listfm] < sElement)
f=m+1;
else if (listfm] == sElement) {
printf("Element found at index %d.\n",m);
break;
}
else
l=m-1;
m = (f + 1)/2;
}
if (F>1)
printf("Element Not found in the list.");
getch();

Output:

Enter the size of the list: 5
Enter 5 integer values

Enter value to be search: 20
Element found at index 2.

6.3 Sorting Algorithms

There are many different techniques available for sorting, differentiated by their efficiency and space
requirements. Following are some sorting techniques which we will be covering in next few tutorials.

—

Bubble Sort
Insertion Sort
Selection Sort
Quick Sort

Merge Sort

o g kDN

Heap Sort

6.3.1 Bubble Sort

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm in
which each pair of adjacent elements is compared and the elements are swapped if they are not in
order. This algorithm is not suitable for large data sets as its average and worst case complexity are
of O(n?) where n is the number of items.

How Bubble SortWorks?

We take an unsorted array for our example. Bubble sort takes O(n?) time so we're keeping it short
and precise.

]l 14 |’ 33 H 27 H 35 H 10 \

Bubble sort starts with very first two elements, comparing them to check which one is greater.

(14 (50 |27 35 [0]

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33
with 27.

B / \ /

14 [s0][27|][10

We find that 27 is smaller than 33 and these two values must be swapped.

‘14”33]’ 27 H35 H10|

.

The new array should look like this -

R EIEIEIE

\ J

Next we compare 33 and 35. We find that both are in already sorted positions.

HEIEIEIE

N\

Then we move to the next two values, 35 and 10.

EIEIEIE)

.

We know then that 10 is smaller 35. Hence they are not sorted.

o)

We swap these values. We find that we have reached the end of the array. After one iteration, the

EIEE

array should look like this -

s B EIED

To be precise, we are now showing how an array should look like after each iteration. After the

second iteration, it should look like this —

RIS

Notice that after each iteration, at least one value moves at the end.

I EA IS

And when there's no swap required, bubble sorts learns that an array is completely sorted.

10 1e)=) == >

Now we should look into some practical aspects of bubble sort.

Algorithm

We assume list is an array of n elements. We further assume that swapfunction swaps the values

of the given array elements.

begin BubbleSort(list)

for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if

end for

return list

end BubbleSort

6.3.2 Insertion Sort

The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-
list (in the same array). This algorithm is not suitable for large data sets as its average and worst
case complexity are of O(n?), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

|14H33Hz7’|1o“35” 19“42”44’

Insertion sort compares the first two elements.

L [N B

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

14 (s [z |10 s8] 10][42 | 4]

.

Insertion sort moves ahead and compares 33 with 27.

0 0 S N Y

And finds that 33 is not in the correct position.

0 D | KL 3 K

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the
sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list

remains sorted after swapping.

14 [27 [ss |10 30 10 |42 |]

.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

0 0 S N Y

These values are not in a sorted order.

1427 (s][0 s [0] 2 | o4

.

So we swap them.
14 2 [10] 20 |35][10 || 42] as |

\ J

However, swapping makes 27 and 10 unsorted.

) (=)o) (= (=)

19 | 42 || 4 |

.

Hence, we swap them too.

(14»” 10 { 27 ” 33” 35 H 19 H 42 H 44 ’

\ s

. .

Again we find 14 and 10 in an unsorted order.

pREannnn

.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

™

10](ve][22 30)35][10][42][]

This process goes on until all the unsorted values are covered in a sorted sub-list. Now we shall
see some programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive simple steps

by which we can achieve insertion sort.

Step 1 - If it is the first element, it is already sorted. return 1;

Step 2 - Pick next element

Step 3 - Compare with all elements in the sorted sub-list

Step 4 - Shift all the elements in the sorted sub-list that is greater than the
value to be sorted

Step 5 - Insert the value

Step 6 — Repeat until list is sorted

6.3.3 Selection Sort

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-based
algorithm in which the list is divided into two parts, the sorted part at the left end and the unsorted

part at the right end. Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost element,
and that element becomes a part of the sorted array. This process continues moving unsorted array
boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities are of
O(n?), where n is the number of items.

How Selection Sort Works?

Consider the following depicted array as an example.

L 3 3| R

For the first position in the sorted list, the whole list is scanned sequentially. The first position where

14 is stored presently, we search the whole list and find that 10 is the lowest value.

142z o2 1o) 42|]

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the list,
appears in the first position of the sorted list.

1058 [27 |18 [3] 10] 42][]

For the second position, where 33 is residing, we start scanning the rest of the list in a linear
manner.

B3)

We find that 14 is the second lowest value in the list and it should appear at the second place. We

swap these values.

D a0 S RN

After two iterations, two least values are positioned at the beginning in a sorted manner.

10)(re 2 e L) 1o 42)|]

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process -

10 || 14 || 19 || 27 || 35 || 33 || 42 || 44

10 (| 14 (| 19 || 27 || 35 || 33 || 42 || 44

Now, let us learn some programming aspects of selection sort.

Algorithm

Step 1 - Set MIN to location 0

Step 2 - Search the minimum element in the list
Step 3 — Swap with value at location MIN

Step 4 - Increment MIN to point to next element
Step 5 — Repeat until list is sorted

	1. Fundamental Notations
	1.1 Problem solving concept top down and bottom up design
	Top Down Program Design
	Bottom Up Program Design

	DIFFERENCE BETWEEN TOP DOWN APPROACH AND BOTTOM UP APPROACH
	1.1.1 Structured Programming
	1.2.1 Data type
	A data type, in programming, is a classification that specifies which type of value a variable has and what type of mathematical, relational or logical operations can be applied to it without causing an error. A string, for example, is a data type tha...
	1.2.2 Variable
	1.2.3 Constants

	2. ARRAY
	2.1 Concept of Arrays
	2.1.1 Declaring Arrays
	2.1.2 Initializing Arrays
	2.1.3 Accessing Array Elements
	2.2 Two-dimensional Arrays
	2.2.1 Initializing Two-Dimensional Arrays
	2.2.2 Accessing Two-Dimensional Array Elements
	2.3 Operations on Arrays
	2.3.1 Insertion Operation
	Algorithm
	Example
	Example
	Output

	2.3.2 Deletion Operation
	Algorithm
	Example
	Output

	2.3.3 Search Operation
	Algorithm
	Example
	Output

	2.3.4 Update Operation
	Algorithm
	Example
	Output

	3. Linked Lists
	3.1Introduction to Linked Lists
	3.2 Linked List Representation
	3.3.1 Create
	3.3.2 Insert
	3.3.3 Delete
	3.3.4 Traverse

	3.5.1 Doubly Linked List Representation
	3.6 Operations on Doubly Linked List
	3.6.1 Insertion Operation
	Example

	3.6.2 Deletion Operation
	Example
	4.3.1 Array
	4.3.2 Linked list

	4.4 Introduction to Queues

	4.6 Implementation of Queues
	4.6.1 Enqueue Operation
	Algorithm for enqueue operation

	4.6.2 Dequeue Operation
	Algorithm for dequeue operation

	4.7 Circular Queue
	 Example: Program for Circular Queue

	4.8 De-queues
	Example: Program for Double Ended Queue (Dequeue)

	5.1.1 Important Terms
	5.2 Binary Search Tree Representation
	Tree Node
	5.3 Traversing BST
	5.3.1 In-order Traversal
	Algorithm

	5.3.2 Pre-order Traversal
	Algorithm

	5.3.3 Post-order Traversal
	Algorithm

	5.4.1 Insert Operation in BST
	Algorithm
	Implementation

	5.4.2 Search Operation in BST
	Algorithm

	6. SORTING AND SEARCHING
	6.1 Introduction to Sorting and Searching
	6.1.1 Sorting
	6.2.1 Linear Search
	Example: Program for Linear Search
	6.2.2 Binary Search
	Example: Program for Binary Search
	How Bubble Sort Works?
	Algorithm
	How Insertion Sort Works?
	Algorithm

	How Selection Sort Works?
	Algorithm

